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ABSTRACT
Several methods for representing pupil plane

aberrations based on wavefront height, slope, and
curvature are discussed. The choice of reference
axis and reference surface is shown to strongly
affect the appearance of the representation. Special
attention will be paid to the use of the line of sight
(the line from the fixation point to the center of the
pupil) as the reference axis. We show that the line
of sight is ambiguous and does not determine the
amount of prism in the wavefront. [J Refract Surg
2000;16:S630-S635]

In recent years there has been an explosion of
activity measuring aberrations of the eye. One of
the goals of this activity is to develop methods

for predicting visual performance. It is not yet clear
how to do that prediction. It is likely that different
aspects of visual performance will require different
ways of viewing the aberrations. This paper exam-
ines and compares five graphical representations of
the aberration data (Figs 1, 2, 4, 5, and 6). The
advantages and disadvantages of the different dis-
plays will be discussed.

There are two domains for specifying aberrations:
the retinal plane and the pupil plane. In the retinal
plane, aberrations are represented by the point
spread function and its Fourier transform, the mod-
ulation transfer function. These retinal representa-
tions are sufficiently familiar that they will not be
examined here. Rather, we examine pupil plane rep-
resentations of aberrations. Pupil plane aberrations
have special relevance to the task of correcting the
aberrations using deformable mirrors, refractive

surgery, and contact lenses. The most common pupil
plane representation is the wavefront height. We
compare several additional representations, includ-
ing wavefront curvature and the pupil point spread
function (pPSF), based on wavefront slope.

We also discuss possible reference axes and refer-
ence surfaces for measuring and displaying aberra-
tions. We examine how the appearance of the aber-
rations in different representations depends strong-
ly on the choices made for the reference axis and ref-
erence surface. How these choices can affect esti-
mates of optimal image quality will be considered.
The suggestion that the line of sight be used as the
reference axis is discussed. We argue that the line of
sight is ambiguous and does not determine the
amount of prism in the wavefront.

WAVEFRONTS ANALYZED
Two examples of aberrations are examined. The

first example is the wavefront aberration found and
plotted by Walsh, Charman, and Howland8 using
the objective aberroscope for their subject PD. It is
specified by the following Taylor expansion:

W(x, y) =    -.0033x3 - .0279x2y - .0454xy2 + 
.0138y3 + .0141x4 + .0121x3y + 
.0304x2y2 + .0161x3y + .0126y4

(1)

Distances (x, y) are measured in mm and the
wavefront, W, is measured in microns. Walsh and
colleagues removed all terms below third order (the
terms able to be corrected by a sphero-cylindrical
lens) when they reported their data. 

The second example that we will examine has a
wavefront given by:

W(x, y) = 2exp(-((x - 1)2 + y2)/2) - 2 exp(-1/2) µm
(2)

This wavefront is a symmetric Gaussian with a
1 mm standard deviation, shifted by 1 mm to the
right. This wavefront was chosen to simulate a mild
keratoconic distortion with peak curvature of
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2 diopters (500 mm radius of curvature of the wave-
front). A more typical keratoconic distortion would
have a peak power of 20 D rather than 2 D. An aber-
ration of 2 D is in the range of aberrations of normal
corneas. The term 2 exp(-1/2) is subtracted off since
we chose the wavefront height to be zero at the
origin (W=0 at x=y=0) in all of our examples.

Around the symmetry axis (at x = 1 mm) this
wavefront can be expanded as:

W(x, y) = 2[(1- exp(-1/2) - ((x - 1)2 + y2)/2 +
((x - 1)2 + y2)2/8] + higher order 
terms (3)

The constant terms give the height of the peak of
the Gaussian. The quadratic terms correspond to
the paraxial spherical wave with a 500 mm radius of
curvature. There are no cylinder or cubic (coma)
terms present around the symmetry axis. The
fourth order terms include spherical aberration.

Around the original axis (x=y=0), the wavefront
of Eq. 2 can be expanded as:

W(x, y) = 2 [exp(-r2/2) exp(x) -1] exp(-1/2)
(4)

= K [(1 - r2/2 + r4/8 + …)(1 + x + x2/2! 
+ x3/3! + x4/4! + …) -1] (5)

= K [x - y2/2 + (x3/3 - x r2)/2 + (x4/24 
+ x2 r2/4 + r4/8) + …] (6)

where K = 2 exp(-1/2) = 1.2131 and r2 = x2 + y2.

We can identify the various terms as follows:
paraxial spherical aberration:

K(x4/24 + x2 r2/4 + r4/8) (7a)
paraxial coma:  -K (x3/3 + xy2/2) (7b)
paraxial sphero-cylinder:  -Ky2/2 (7c)
paraxial prism:  Kx (7d)
paraxial piston (offset at origin):  0 (7e)

Eq. 6 can be rewritten as a Zernike expansion. In
the limit of an infinitesimal pupil of radius R, the
first two terms of Eq. 6 become:

W(x, y) = 1.2131(Z0,0 R2/8 + Z1,1 + Z2,0/4 - 
Z2,2/4) plus higher order terms (8)

where the Zernike polynomials are: Z0,0 = 1, Z1,1 = x,
Z2,0= x2 + y2 - 0.5R2 , and   Z2,2 = x2 - y2 (9)

For R = 2.0 mm, the Zernike expansion of Eq. 2
becomes:

W(x, y) = -0.482 Z0,0 + 0.470 Z1,1 - 0.209 Z2,0 + 
0.091 Z2,2 plus higher order terms  (10)

Line of Sight and Reference Axis
One of the main topics of concern to the present

paper is the question of what to do with the prism
term (0.470 Z1,1 for the 4 mm diameter pupil of
Eq. 10). This is the question of how to choose the ref-
erence axis. A task force sponsored by the Optical
Society of America has recommended that the line of
sight (LOS) be used as the reference axis.1 The LOS
is the line from the pupil center to the fixation point. 

For the reference axis direction let us first con-
sider the case of a large pupil with two extremes for
the entering beam: double-pass with incoming rays
filling the full pupil, and one-and-a-half-pass
(1.5 pass) with a small incoming beam. For a double-
pass instrument the LOS would coincide with the
coordinate axis we have been using in Eqs. 2 to 10.
The incoming rays would be aligned with the fixa-
tion point on the z axis. Because the pupil is large,
the small Gaussian bump would be negligible, so
most of the emerging rays will go back in the z direc-
tion. The coordinate system used in Eq. 2 is thus
excellent. The wavefront in this coordinate system
is shown as the dark curve in Fig. 3a. Now consider
the 1.5-pass method that is actually used in Shack-
Hartmann measurements.2 In order to have the
retinal image unaffected by unknown aberrations, it
is typical to have the entering beam be narrow, on
the order of 1 mm in diameter. We assume this beam
is coming through the center of the pupil, which is
taken to be at x=y=0. This is the chief ray. The beam
focuses on the retina and then emerges through the
full pupil. The emerging ray coming through the
pupil center will retrace the path of the incoming
ray (reversibility of light) and would hit the fixation
point. The peripheral rays would be skewed off axis.
The coordinate system in this case is shown in
Fig 3b, where the wavefront is tilted from the case
in Fig 3a. The wavefront normal at the pupil center
is aligned with the z-axis and the chief ray. The
amount of rotation needed in going from 3a to 3b is
given by the prism term in Eqs. 6 or 8 (assuming the
1 mm diameter entrance beam is close to 0 mm).
This rotation is 1.2131 milliradians (mrad) = .12131
prism diopters = 4.17 min, using 57.3*60/1000=
3.438 min/mrad. For the more realistic case of a
4 mm diameter pupil a rotation of 0.137 mrad max-
imizes the Strehl ratio for light whose wavelength is
0.5 µm. For a 4 mm pupil and a large wavelength
the Gaussian bump aberration becomes relatively
small and we enter the regime where the Strehl
ratio is well approximated by the wavefront
variance3:

Strehl = 1 - var(W) (2�/�)2 (11)
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In this regime the Strehl ratio is optimized by
eliminating the Zernike prism term. From Eq. 10 it
is seen that a rotation of 0.482 mrad produce a LOS
reference axis with vanishing Zernike prism. In
summary, we have discussed four possible methods
for defining the LOS reference axis in terms of the
wavefront W(x, y) in Eq. 2:

Large pupil LOS (double-pass):
Wlarge(x, y) = W(x, y) (12a)

Small pupil LOS (1.5-pass):
Wsmall(x, y) = W(x, y) - 1.183 x (12b)

2 mm pupil LOS, large � (no Zernike prism):
W2Z(x, y) = W(x, y) - 0.470 x (12c)

2 mm pupil LOS, � = 0.5 (optimal Strehl):
W2S(x, y) = W(x, y) - 0.137 x (12d)

Each of the expressions for the wavefront in
Eq. 12 corresponds to using the LOS under different
viewing conditions. In Figures 1a and 1b, we show
that even though the rotations in Eqs. 12 are small
(the largest, in Eq. 12b, is 4.17 min) the wavefront
takes on a different appearance after the rotation.
We contend elsewhere (see discussion of Figs 2a,b
for an abbreviated version) that this small differ-
ence can also lead to different conclusions regarding
visual performance.

The figure shows five different representations of
aberrations (rows 1, 2, 4, 5 and 6) for five wavefront
shapes (the columns). The columns are the following
shapes:

Column 1: Eq. 6 with all the terms (Eq 12a)
Column 2: Eq. 6 minus the paraxial prism term

(Eq. 12b)
Column 3: Eq. 6 minus the shifted spherical term,

K ((x - 1)2 + y2)/2
Column 4: Eq. 6 minus all terms less than cubic

order (the terms shown in Eq. 8)
Column 5: Eq. 1 from the Walsh and colleagues4

The rationale for the various manipulations of
the lower order terms in the first four columns is as
follows. The first column is the original wavefront
(Eq. 12a) that has full symmetry around the shifted
axis (at x = 1 mm). In the second column the parax-
ial prism is removed by a rotation of 4.17 min
around the y axis. The gray curve in Fig. 3a shows
that the slope is 4.17 min at the origin. The third
column removes the paraxial prism by removing
just the right amount of displaced sphere so no rota-
tion is needed. Finally, the fourth column removes
all the second-order terms, leaving only the aberra-
tions. A similar strategy was used by Walsh and col-
leagues4, shown in the fifth column for the wave-
front of Eq. 1. The third and fourth columns corre-

spond to different strategies for choosing a reference
surface. Which of the various options for choosing
the reference surface is best depends on the applica-
tion (determining optimal refractive surgery abla-
tion vs. predicting best uncorrected acuity vs.
predicting best corrected acuity).

Five Pupil-based Representations of Aberrations
1. Wavefront elevation—The first representation

(Fig. 1) is the standard wavefront contour plot.
Contour lines at -2, -1, 0, 2, and 6 µm are shown as
indicated by the colorbar legend on the right. In all
of our examples we choose the piston term so that
the wavefront height at the origin is 0. In our con-
tour plots, values that are more negative than the
colorbar range are represented by white. Values
that are more positive than the colorbar range are
represented by the darkest color of the colorbar. The
wavefront representation is especially relevant for
refractive surgery since W(x, y)/(n-1) is close to the
amount of cornea to be ablated5, where n is the
corneal index of refraction (one must account for
epithelial regrowth and corneal reshaping in plan-
ning the surgery, and one must choose an optimal
reference axis and reference surface, the topic of
this paper).

2. Wavefront slope. Acuity Map—The second rep-
resentation of aberrations (Fig 2) is our novel
approach, and is an acuity map since it shows the
pupil point spread function (pPSF). It can be
thought of as the image space retinal PSF brought
to object space and referenced to the pupil plane.
The pPSF is given by the wavefront slope:

pPSF(x, y) = 3.438 * magnitude(grad (W(x, y)))
(13)

where the 3.438 min/mrad conversion was discussed
earlier, and the gradient of W is a vector given by:

grad(W) = (dW/dx, dW/dy) = -2 (x-1, y) W(x, y) for
the Eq. 2 wavefront       (14)

The quantity in Eq. 14 is the slope of the object
space ray at pupil location (x, y) that came from a
fixed retinal point. It is precisely the slope being
measured by a Shack-Hartmann sensor, the angle
between the wavefront normal and the reference
axis. Since it is close to the raw data it is fairly inde-
pendent of wavefront reconstruction assumptions. 

The pPSF is probably the most clinically relevant
of all the pupil plane representations since it direct-
ly shows the blurring in minutes of arc in object
space. The lightest shading of gray shows the
regions of the pupil in which the blur is less than
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one minute. This is the region contributing to 20/20
acuity. Figures 1 and 2 show that the representa-
tions of aberrations depend on what is chosen as the
reference axis and the reference surface. Panels a-d
are representations of the same waveform, yet they
look different from each other.

Figure 3 shows horizontal cuts of Figure 1 (black)
and Figure 2 (gray) along the x axis. These plots
simultaneously show the aberration with the wave-
front height (Fig 1) in microns and the point spread
function (Fig 2) in minutes.

3. Wavefront slope. The Tscherning “Aberroscope
Grid”—Our second representation was a contour
plot of the magnitude of the wavefront slope. There
are other ways to represent a slope. One could place
short arrows at an array of pupil samples.6 The
length of the arrow would be given by Eq. 13 and the
direction would be the direction of the slope.
Although this can be a useful representation it is
often difficult to discern the direction of the arrows
and the picture can get cluttered. An alternative is
to connect the tips of the arrows making a grid. That
is our third representation (Fig 4). It is similar to
the representation that Howland and Howland7

used for their crossed-cylinder aberroscope. It is
even closer to the Tscherning8 aberroscope (using a
plus lens rather than a cross-
cylinder). The main difference is that our represen-
tation is in object space whereas Tscherning’s was in
image space, on the retina. Our intersection points
are similar to an object space spot diagram.

4 and 5. Wavefront Curvature (Refractive
Power)—Figures 5 and 6 are two representations of
the curvature of the wavefront. Since the wavefront
slope (Fig 2) is so small, the curvature is simply the
second derivative, to an excellent approximation. To
specify the wavefront curvature, one begins by tak-
ing three second derivatives of the wavefront:
Wxx = d2W/dx2, Wyy = d2W/dy2, Wxy = d2W/dxdy. These
second derivatives are components of refractive
power of the incoming waveform needed to produce
a good focus.

There are quite a few ways to combine the three
second derivative maps to get integrated power
maps:

—Mean curvature, or Laplacian, or equivalent
sphere: ES = (Wxx + Wyy)/2

—Jackson cross cylinder at 0, J0 = (Wxx - Wyy)/2.
This is the coefficient of the small pupil Zernike Z2,2
term.

—Jackson cross cylinder at 45, J45 = Wxy. This is
the coefficient of the small pupil Zernike Z2,-2 term.

—Total Jackson cylinder, J = sqrt(J0
2 + J45

2). This
is half the usual cylinder.

—Maximum and minimum curvatures = ES + J
and ES - J

—Meridional curvature. The component of curva-
ture in the meridional direction.

Several of these representations are already
familiar from methods used to represent corneal
topography information. Barsky, Klein, and Garcia 6

showed a number of representations for a kerato-
conic cornea. They described meridional curvature
(they called it instantaneous curvature) and mean
curvature (close to their Gaussian curvature). They
showed how cylinder could be illustrated as short
oriented lines on the mean curvature plot. For
Figures 5 and 6 we chose to illustrate a different
wavefront curvature (also called refractive power
since we are discussing the refracted wavefront):
maximum and minimum curvature. We found max-
imum and minimum wavefront curvatures to be
especially useful for displaying refractive powers
after refractive surgery.

RESULTS
The right-hand column of Figures 1 to 7 are rep-

resentations of the wavefront presented in Figure 2
of Walsh and coworkers.4 Our Figures 1e and 4e cor-
respond to their Figures 2c and 2b, respectively. Our
inner contour line shows where the wavefront is
between -1 and 0 µm and the middle zone is the
region between 0 and 2 µm. The negative values are
caused by the presence of coma. Panel 2e shows that
there is a region with a diameter of around 4 mm
where the amount of blur is less than 1 min. The
finding that the various panels in 1e to 7e are fairly
symmetric around the origin indicates that coma is
probably fairly small for this individual. In fact, as
seen in Table 3 of Walsh and colleagues4, observer
PD has the smallest amount of coma of their
11 observers. Plot 5e of maximum curvature shows
there is a region with about a 4 mm diameter where
the maximum curvature is less than 1 diopter. Plot
6e of minimum curvature has a central region that
is negative, due to the comatic contribution.
However, as seen in Figure 7e, this negative curva-
ture is very close to 0.

Panels a to d are all for the same Gaussian wave-
front described by Eqs. 2 to 10. The different
columns all have identical Taylor expansion terms
above second order. They differ by what is done with
the direction of the reference axis (the amount of
prism) and what is done with the sphero-cylindrical
correction. Panels d are the representations that are
similar to what Walsh and colleagues4 did, namely
remove all the Taylor expansion terms below third
order. We contend that this may not be the optimal
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way to view the aberrations or their effect on vision.
The left-hand panels (column a) represent the

original Gaussian wavefront. The Gaussian shape of
the wavefront is most easily discerned in panel 1a.
One of the most instructive pictures for assessing
the expected visual quality is Figure 2. Panel 2a
shows that there is a large outer ring (the region
greater than 2 mm from the center of the Gaussian)
where the blur is less than 1 min. We would expect
this individual to have quite good vision for a dilat-
ed pupil because of the large outer region with min-
imal blur. The gray line in Figure 3 showing a hori-
zontal cut through the middle of Figure 2 may be an
easier way to gain an appreciation for what the con-
tour lines of Figure 2 are representing. The spot
(“spider-web”) diagrams of Figure 4 are based on the
same gradient information used to construct Figure
2. The enlargements that are seen in panels 4c and
4d are due to the removal of sphere (in 4c) and
sphero-cylinder (in 4d). The Figure 4 representation
provides a quick view (for experienced “spider-web”
interpreters) of the Shack-Hartmann raw data and
the nature of the aberrations. Figures 5 and 6 have
the advantage that because they are second deriva-
tives, they are independent of the prism term. The
shape of the contours are also independent of a con-
stant spherical term (Z2,0) that merely elevates the
plot by a constant. For a cornea after refractive
surgery, maximum and minimum curvature (Figs 5,
6) will tend to be the curvature in the radial and
tangential directions respectively, relative to the
center of the ablation, even for decentered ablations.
This robustness of curvature gives it extra reliabili-
ty. The problem with curvature is that being a sec-
ond derivative, it will tend to be noisier than the
height or slope.

DISCUSSION
Panels a and b of Figures 1 to 3 show that a tilt

(rotation) of the reference axis by just 4.17 min
makes dramatic changes in the wavefront height
(Fig 1) and slope (pupil PSF, Fig 2). Panels a and b
use a line of sight (LOS) reference axis for a large
pupil double-pass (Eq. 12a) and one-and-a-half-pass
(Eq. 12b) instrument, respectively. This shows the
LOS does not unambiguously determine a reference
direction for viewing aberrations. When the aberra-

tions are small compared to the wavelength of light
the wavefront variance is directly related to the
physical optics PSF height (Strehl ratio in Eq. 11)
and the Strehl ratio is maximized by choosing an
axis that removes the Zernike prism (Eq. 12c). For
large aberrations the physical optics Strehl ratio is
maximized by a rotation (Eq. 12d) that is close to
the large pupil rotation (Eq. 12a).

The usual method for representing aberrations at
the pupil plane is to show a contour map of the
wavefront. In this paper we showed two additional
representations based on the wavefront slope and
two based on the wavefront curvature. When the
aberrations are small the wavefront height gives the
best measure of image quality. For large aberra-
tions, geometric optics and wavefront slope (the
pupil PSF, Fig 2) gives the best insight into image
quality. 

Just as the choice of reference axis and sphero-
cylindrical reference surface are relevant for how to
display the aberrations, they are also relevant for
how much cornea to ablate in refractive surgery.
A judicious choice of these quantities can result in a
residual optics with extended depth of focus with
less cornea being ablated than would be the case for
a “more obvious” choice of axis and residual
refraction.5
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