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One of the most important limitations to cur-
rent research in visual optics is the “jargon
gap” that separates clinically trained

researchers and practitioners from the technical sci-
entists who inhabit the world of modern optics. To
help overcome this communication gap, this brief
tutorial summarizes the terminology recommended
by the Optical Society of America for reporting
wavefront aberration data from eyes and offers
some suggestions for visualization of aberration
data (Thibos LN, Applegate RA, Schwiegerling JT,
Webb R. Standards for reporting the optical aberra-
tions of eyes. Trends in Optics and Photonics 2000.
Washington, DC: Optical Society of America). The
plan is to 1) define the wavefront aberrations of an
eye in English, and then again in the language of
mathematics, 2) to show how the aberration struc-
ture of any eye, no matter how complicated or idio-
syncratic, can be understood by a systematic decon-
struction into fundamental building blocks, and
3) to illustrate some methods for graphical display
of the full spectrum of these fundamental building
blocks in order to gain insight into the nature of
ocular aberrations.

To begin, we need a clear picture of the meaning
of the term “wavefront aberration.” The easiest way
to conceive of the wavefront aberration of an eye is
to examine the light that is reflected out of an eye
due to a laser beam that is focused onto the retina
at some point P' (Fig 1A). We can think of this light
in terms of the bundle of rays that is reflected
through the eye’s pupil, perhaps focusing at some
point P that would represent the eye’s far point, in
the case of a myopic individual. Alternatively, we
can visualize a surface that is everywhere perpen-
dicular to all the rays in the bundle. This surface is
the wavefront of light being reflected out of the eye,

and the shape of this surface is the essence of a
“wavefront aberration function” for the eye. Of
course, this wavefront is propagating forward at the
speed of light, but if we could freeze time and take a
snapshot of an emerging wavefront, then it might
look like the illustration in Figure 1.

To understand why the shape of the wavefront is
critical, think about the wavefront that would
emerge from an optically perfect eye, one that is
emmetropic and free of all imperfections. Such an
eye would reflect rays that are parallel, intersecting
at a far point infinitely far away, and thus the
reflected wavefront would be a circular piece of a
plane wave with the same diameter as the eye’s
pupil. The optical imperfections of a real eye, there-
fore, are revealed by comparing the shape of the
actual wavefront reflected from the eye to this ideal
plane wave. We can make this comparison quantita-
tively by measuring the distance between the
reflected wavefront and the ideal wavefront, which,
for convenience, we place in the (x,y) plane of the
eye’s entrance pupil (Fig 1B). This distance between
the actual wavefront and the pupil plane represents
an optical error that varies from point-to-point
across the pupil and therefore can be quantified by
a function W(x,y), where the letter W stands for
wavefront error.

The wavefront error for an eye suffering only
from defocus has a parabolic shape (Fig 2A). This
shape is defined mathematically by a simple
equation:

W(x,y) = 2(x2 + y2) - 1   (defocus) (1)

that contains the key expression x2 + y2. There are
some other constants in the equation that are not
essential, but which provide some convenient fea-
tures. For example, the -1 in the equation forces the
average error to be zero. This corresponds to taking
our snapshot of the reflected wavefront at the
moment when it passes through the eye’s pupil. If
any part of the wavefront emerges early, it gener-
ates positive errors, and if another part of the wave-
front lags behind, it generates negative errors. If we
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catch the wavefront at just the right moment, the
positive errors will exactly cancel the negative
errors and the mean will be zero, just like this equa-
tion says.

It turns out that the equations used to represent
wavefront errors of eyes often look much simpler if
written not in terms of the x-y coordinates of a rec-
tangular coordinate system in the pupil plane, but
instead in terms of the polar coordinates r and �. An
eye with astigmatism, for example, will reflect a
saddle-shaped wavefront, as shown in Figure 2B,
which has a simple algebraic equation when written
in polar form

W(r,�) = r2cos2�� (astigmatism) (2)

Now that we see how to conceive of the eye’s
wavefront aberration function and how to describe

it mathematically with an equation, the next step is
to combine simple wavefronts like those illustrated
in Figure 2 to make more complex wavefronts that
can describe the aberration structure of real eyes.
To do this we need a catalog of basic shapes that we
can add together. There are lots of ways to make
such a catalog, but the most popular scheme is cred-
ited to the optical scientist, Zernike. Since the basic
building blocks of Zernike will be the basis for
describing the aberration structure of eyes, they are
known as basis functions. Each Zernike basis func-
tion is the product of two other functions, one of
which depends only on radius and the other, which
depends only on meridian. For example, the astig-
matism wavefront described by Eq (2) contains a
polynomial in the radius variable r, in this case a
second-order polynomial, and a sinusoidal term
involving the meridian variable �, in this case with
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Figure 1. A) The shape of the reflected wave-
front of light due to a point source at P' deter-
mines the wavefront aberration of the eye. B)
The wavefront aberration W(x,y) is defined
as the distance between each point on the
reflected wavefront and some ideal refer-
ence wavefront. For an emmetropic eye, the
ideal reference is a plane wave in the pupil
plane. In this case the shape of the reflected
wavefront is also the aberration function
W(x,y).
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Figure 2. Examples of wavefront aberration func-
tions: A) defocus, specified in rectangular coordi-
nates, and B) astigmatism, specified in polar
coordinates.



a frequency of 2. This basic pattern of a polynomial
times a sinusoid occurs for all of the Zernike func-
tions. Another example is a basis function called
“coma,” which is the product of a third-order poly-
nomial and a sinusoidal harmonic of frequency 1.

W(r,�) = (3r3 - 2r)sin�����(coma) (3)

One of the attractive features of the set of Zernike
functions is that they are mutually orthogonal,
which means they are independent of each other
mathematically. Another convenient feature is that
every mode except the first has a zero mean, and
they all are scaled so as to have unit variance
(Thibos LN, Applegate RA, Schwiegerling JT, Webb
R. Standards for reporting the optical aberrations of
eyes. Trends in Optics and Photonics 2000.
Washington, DC: Optical Society of America). This
puts all of the modes on a common basis so their rel-
ative magnitudes can be compared easily. The
orthogonality of the Zernike basis functions makes
it easy to calculate the total variance in a wavefront
as the sum of the variances in the individual
components.

The Zernike basis functions, or “modes” as they
are often called, are systematically arranged into a
periodic table with the shape of a pyramid (Fig 3).
Each row in the pyramid corresponds to a given
order of the polynomial component of the function
and each column corresponds to a different merid-
ional frequency. By convention, harmonics in cosine
phase are assigned positive frequencies and har-
monics in sine phase are assigned negative
frequencies. Although each mode can be assigned a
single reference number, a more natural numbering
system is a double-script notation, which designates
each basis function according to its order and fre-
quency. The radial order is used as a subscript and
the meridional frequency is used as a superscript to
unambiguously and conveniently identify each
mode.

Given this catalog of fundamental building
blocks, we may now describe the aberration struc-
ture of an eye mathematically as the weighted sum
of Zernike basis functions. 

W(r,�) = �������cn
f Zn

f                             (4)
order frequency
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Figure 3. A periodic table of Zernike basis
functions. Subscript n indicates radial order,
which gives the row number in the table.
Superscript f indicates meridional frequency,
which gives the column number in the table.



Such a description is called a Zernike expansion
of the wavefront aberration. The weight cn

f, which
must be applied to each basis function when com-
puting the sum, is called an aberration coefficient.
Each aberration coefficient is just a number, with
physical units typically specified in micrometers, or
sometimes reported in the units of the wavelength
of light. The aberration coefficients of a Zernike
expansion are analogous to the Fourier coefficients
of a Fourier expansion, which are in turn analogous

to the energy spectrum of a light source. Thus, it is
common to speak of the “Fourier spectrum” of a
waveform, and in the same way we may speak of the
“Zernike spectrum” of the eye’s optical system.

This development leads to our final topic—to
explore various ways of displaying the spectrum of
aberration coefficients associated with a Zernike
expansion. To visualize the two-dimensional
Zernike spectrum as a pyramid, we can assemble a
collection of subregions in our graph that
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Figure 4. Two methods for displaying the
Zernike spectrum. The pyramidal layout of
data for individual modes corresponds to the
periodical table in Figure 3. A) Each Zernike
mode is represented by a rectangle, the inten-
sity of which represents the coefficient value.
B) Each mode is represented by a subgraph
that shows the mean (symbol) and standard
deviation (error bars) for right and left eyes.
Data source is the Indiana Aberration Study,
2000.



correspond to the pyramid of Zernike basis func-
tions. Within each sub-region, we can show infor-
mation about the corresponding Zernike mode. For
example, we can display the value of the Zernike
coefficients of a single eye, or the mean of a popula-
tion of eyes, using a pyramid of rectangular blocks.
As shown in Figure 4A, the intensity of each block
indicates the value of the coefficient for the corre-
sponding mode. White signifies a large positive
value, black signifies a large negative value, and
grey signifies zero. The advantage of this visualiza-
tion scheme is that it permits an immediate visual
assessment of the relative magnitude of the various
modes that make up the aberration structure of an
eye.

To show the mean and standard deviation of each
coefficient in a population of eyes, we might use
each subregion in the pyramid to plot a small graph
(Fig 4B). There is ample room in such a display for
two symbols that separately report results from a
population of right and left eyes. Such a graph
makes it easier to see which frequencies and which
orders have the largest coefficients and therefore
have the largest effect on the quality of the retinal
image. Incidentally, it is common practice to omit
the zero-order and first-order coefficients from the
pyramid spectrum because they correspond to pris-
matic deviations and constant offsets, which have
no bearing on the optical quality of the retinal image
for monochromatic light and consequently are not of
interest in most applications.

A more adventurous scheme might use the subre-
gions of the pyramid to plot frequency histograms to
show the distribution of Zernike coefficients in
greater detail. Alternatively, we may wish to simpli-
fy the picture by reducing the full, two-dimensional
Zernike spectrum to one dimension by summing
across rows or down columns of the pyramid. The
proper way to perform this summing operation is to
compute the square root of the sum of the squares of
the various Zernike coefficients. This accounting

scheme is made possible by the orthogonality prop-
erty of the Zernike basis functions and corresponds
to the summing of the variances contributed by each
mode to the total variance.

To simplify the presentation even more, it may be
useful to define a quantity Me called “equivalent
defocus,” which is the amount of defocus required to
produce the same wavefront variance as found in
one or more higher-order aberrations. A simple for-
mula allows us to compute equivalent defocus in
diopters if we know the total wavefront variance in
the Zernike modes in question

Me = 4��3 RMS Error (5)  
Pupil Area

In this equation, “RMS error” is shorthand for the
square root of wavefront variance. Of course, we
must keep in mind that the kind of optical blur pro-
duced by higher order aberrations is not exactly the
same as the blur produced by defocus. Nevertheless,
this concept of equivalent defocus helps interpret
the Zernike coefficients in familiar dioptric terms.
The basis of the equivalent defocus concept is the
notion that the imaging quality of an eye is deter-
mined primarily by wavefront variance, and it
doesn’t matter which Zernike mode produces that
variance. At present, this assumption is an article of
faith amongst aberrometrists. However, we don’t yet
know whether wavefront variance is the best pre-
dictor of visual performance. There are many other
metrics of image quality that can be derived from
the wavefront aberration function that may prove to
be more useful. For example, metrics associated
with the point-spread function and the optical
transfer function of the eye have a good track record
in vision science for correlating optics and vision,
and these may turn out to be more useful than
wavefront variance in the clinic. Hopefully, answers
to this important question will be featured in future
meetings of the International Wavefront Congress.
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